Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate
نویسندگان
چکیده
BACKGROUND Complete conversion of the major sugars of biomass including both the C5 and C6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to 'hydrolysate toxicity,' a major problem for microorganisms to achieve complete sugar utilization. Therefore, development of more robust microorganisms to utilize the sugars released from biomass under toxic environment is critical. In this study, we use continuous culture methodologies to evolve and adapt the ethanologenic bacterium Zymomonas mobilis to improve its ethanol productivity using corn stover hydrolysate. RESULTS A turbidostat was used to adapt the Z. mobilis strain 8b in the pretreated corn stover liquor. The adaptation was initiated using pure sugar (glucose and xylose) followed by feeding neutralized liquor at different dilution rates. Once the turbidostat reached 60% liquor content, the cells began washing out and the adaptation was stopped. Several 'sub-strains' were isolated, and one of them, SS3 (sub-strain 3), had 59% higher xylose utilization than the parent strain 8b when evaluated on 55% neutralized PCS (pretreated corn stover) liquor. Using saccharified PCS slurry generated by enzymatic hydrolysis from 25% solids loading, SS3 generated an ethanol yield of 75.5% compared to 64% for parent strain 8b. Furthermore, the total xylose utilization was 57.7% for SS3 versus 27.4% for strain 8b. To determine the underlying genotypes in these new sub-strains, we conducted genomic resequencing and identified numerous single-nucleotide mutations (SNPs) that had arisen in SS3. We further performed quantitative reverse transcription PCR (qRT-PCR) on genes potentially affected by these SNPs and identified significant down-regulation of two genes, ZMO0153 and ZMO0776, in SS3 suggesting potential genetic mechanisms behind SS3's improved performance. CONCLUSION We have adapted/evolved Z. mobilis strain 8b for enhanced tolerance to the toxic compounds present in corn stover hydrolysates. The adapted strain SS3 has higher xylose utilization rate and produce more ethanol than the parent strain. We have identified transcriptional changes which may be responsible for these phenotypes, providing foundations for future research directions in improving Z. mobilis as biocatalysts for the production of ethanol or other fuel precursors.
منابع مشابه
Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose
BACKGROUND Numerous attempts have been made to improve xylose utilization in Z. mobilis including adaptive approaches. However, no one has yet found a way to overcome the reduced xylose utilization observed in fermentations carried out in the presence of glucose as well as the inhibitory compounds found within pretreated and saccharified biomass. Our goal was to generate Z. mobilis strains that...
متن کاملImpact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethano...
متن کاملGenetic Engineering and Improvement of a Zymomonas mobilis for Arabinose Utilization and Its Performance on Pretreated Corn Stover Hydrolyzate
A glucose, xylose and arabinose utilizing Zymomonas mobilis strain was constructed by incorporating arabinose catabolic pathway genes, araBAD encoding L-ribulokinase, L-arabinose isomerase and L-ribulose-5-phosphate4-epimerase in a glucose, xylose co-fermenting host, 8b, using a transposition integration approach. Further improvement on this arabinose-capable integrant, 33C was achieved by appl...
متن کاملInhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates
BACKGROUND During the pretreatment of biomass feedstocks and subsequent conditioning prior to saccharification, many toxic compounds are produced or introduced which inhibit microbial growth and in many cases, production of ethanol. An understanding of the toxic effects of compounds found in hydrolysate is critical to improving sugar utilization and ethanol yields in the fermentation process. I...
متن کاملEnhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration
BACKGROUND Furfural and 5-hydroxymethylfurfural (HMF) are the two major furan aldehyde inhibitors generated from lignocellulose dilute acid pretreatment which significantly inhibit subsequent microbial cell growth and ethanol fermentation. Zymomonas mobilis is an important strain for cellulosic ethanol fermentation but can be severely inhibited by furfural and (or) HMF. Previous study showed th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015